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Abstract

The TOPological Sub-Strutural Molecular Design (TOPS-MODE) approach has been introduced for the study of mutagenic properties.

The mutagenicity of 23 dental monomers was studied with this approach obtaining a good quantitative structure–toxicity model. For the

comparison were involved four different weights in the diagonal entries of the bond matrix for selecting the best TOPS-MODE model. TOPS-

MODE was used to derive the contribution of different fragments to the toxicity of studied compounds.

q 2004 Published by Elsevier Ltd.
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1. Introduction

Currently, much effort is expended toward improving the

quality and durability of polymer based dental restoratives

[1]. These materials when prepared in situ may risk leaching

of chemicals should the polymerization not be ideal [2].

Because substance such as monomers, initiators, and poly-

merization sensitizers must be reactive, there is also risk of

interaction with genetic bio-molecules and therefore the

possibility for inducing genotoxicity [3].

Since experimental determination of mutagenicity is

difficult and expensive, to simplify the laboratory process, it

would be desirable to use a model based on a dataset of

published results to predict mutagenicity, of previously

untested chemicals. Such a result could then be used to

predict a suitable, more selective, dose range over which

to perform the Ames assay, reducing the necessary

experiments to obtain an approximate local minimum for

the linear range.

QSAR models can be used to illuminate the modes of

action of genotoxic agents aiding in initial laboratory

investigations. Such information can be achieved from the

descriptors that are identified as contributing to genotoxi-

city. Thence, chemical knowledge can then be combined

with the specific descriptors to develop design hypotheses

leading to new dental resins [2].

In the context of novel in silico methods for modeling

physicochemical and biological properties of chemicals, the

topological sub-structural molecular design (TOPS-MODE)

approach has been introduced. The TOPS-MODE has been

applied to the description of physicochemical and biological

properties of organic compounds [4–10].

The successful application of this theoretical approach to

the modeling of toxicological and neurotoxicological

properties [6,11] has inspired us to perform an exhaustive

study in order to test and/or validate TOPS MODE

applicability in assessing discoveries about the human

mutagenic impact.

We will show here how TOPS-MODE is able to pro-

duce good QSAR models that permit easy structural

interpretation of the results in terms of group contributions

to mutagenicity.

2. Materials and methods

2.1. TOPS MODE approach

Here, we use the TOPS-MODE approach to obtain
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molecular descriptors through which we developed the

QSAR function. The mathematical details of the method

have been largely reported [12–14], thus we will outline

only the fundamental remarks.

Briefly, this method codifies the molecular structure by

means of the edge adjacency matrix E (likewise called bond

adjacency matrix B). The E or B matrix is a square table of

order m (the number of chemical bonds in the molecule)

[15]. The elements of such a matrix ðeijÞ are equal to 1 if the

bonds i and j are adjacent (it means that an atom exist, which

participates either in the bond i or in the bond j) or 0

otherwise. In order to codify information related to

heteroatoms, the TOPS-MODE approach use BðwijÞ

weighted matrices instead of B: The weights ðwijÞ are

chemically meaningful numbers such as bond distances,

bond dipole, bond polarizabilities, or even mathematical

expressions involving atomic weightings such as hydro-

phobicity or Van der Waals radii [10,11]. These weightings

are introduced in the main-diagonal of the matrix BðwijÞ:

Afterwards, the spectral moments of this matrix may be

used as molecular fingerprints in QSAR studies in order to

codify molecular structure. By definition, the expression

‘spectral moments’ must be understood as the sum of the

elements in the natural powers of BðwijÞ: It means that the

spectral moment of order k ðmkÞ is the sum of the main

diagonal elements ðeiiÞ of the matrix BðwijÞ
k: In the present

work, the BðwijÞ matrix was weighted in the main diagonal

with the bond distance, bond dipole, bond molar refractivity

and atomic radius of Van Der Waals. Such a parameter

equals m1 to sum the atomic radii of Van Der Waals, sum the

atomic molar refractivity, sum the bonds dipole, or sum the

bond distances in the molecule according to selected case.

The calculation of the mk was carried out by means of the

software package ModesLab 1.0 bw [16].

2.2. Data set and computational strategies

A series of 23 methacrylates and their cyclic analogs

were reported by Yourtee et al. [2] and Tuparainen [17].

This set was used in the present work. As these authors

report, many fur-2-enones could be used because their

structures were similar to those of the methacrylates

compounds [2].

Also the fur-2-enones derivatives has been selected for

obtaining a training set in a reasonable amount of

compounds because of the details of mutagenicity of this

dental monomers are not found easily.

TOPS-MODE computer software [18] was employed to

calculate molecular descriptors. The standard dipole

moments, standard bond distance, molar refractivity and

atomic radius of Van Der Waals were used as bond

weightings for making differentiation of heteroatoms [13].

The selection of only these types of descriptors from the

whole pool of 10 types included in TOPS-MODE

methodology was carried out on the sake of simplicity and

on the belief that polarity and steric parameters influence the

mutagenicity of many compounds [2,3].

So, four sets of spectral moments were obtained, one for

each used bond weightings. A brief descriptions of these

schemes used in the current work are given in Table 1.

In general, 15 spectral moments were calculated for each

of the studied schemes, which make a total number of 60

descriptors. We also used multiplication of spectral

moments as independent variables for describing mutageni-

city on these monomers. In this case, we multiplied m0 and

m1 for the first 11 spectral moments obtaining 24 new

variables.

However, we develop the QSAR models with each

independent scheme and not with all the calculated

descriptors at a time. The statistical processing to obtain

the QSAR models was carried out by using the Forward

stepwise regression methods [19], where the independent

variables are individually added or deleted from the model

at each step of the regression depending on the Fisher ratio

values selected to enter and to remove until the ‘best’ model

is obtained.

Examining the regression coefficient, cross validation

leave-one-out and the proportion between the cases and

variables in the equation determined the quality of the

model.

3. Results and discussion

3.1. Quantitative structure association constant relations

In this work, the model selection was subjected to the

principle of parsimony. Then, we choose a function with

high statistical signification but having so few parameters

ðbkÞ as possible.

Table 1

Definition of the different weighting bonds used in the current work

Weighting bonds Definitiona

Distance Standard bonds distances

Dipole Bond parameters computed with the relative

electronegativity

Molar refractivity Bond parameters computed with the molecular

refractivity

Radius of Van Der Waals Bond parameters computed with the atomic

radius

a Consulting Ref. [28] for more complete definition of bond parameters.
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Statistical parameters of the linear regression models

obtained by using TOPS-MODE to describe mutagenicity

are given in Table 2. The order of spectral moments that are

included in such models varies from one model to another. It

is due to the fact that the structural information encoded by

the different weighting schemes used here is different and

they have different influences on the description of the

variable studied. The four models used for modeling

mutagenicity are show in Table 2.

As can be seen, these models are statistically significant

because of their p , 0:05 [20]. This confirms that all

variables conforming the models are significant and

essentially all of them could be used for predicting the

studied property of this set of compounds. Furthermore all

models have the same number of significant variables and in

all of them the same training set was used which was formed

by 23 compounds as it is shown in Table 3.

However, there are remarkable differences concerning

the explanation of the experimental variants which give the

same ðR2Þ where it can be seen that models obtained using

the weighting spectral moments with standard dipole

moment explain more than 91% of mutagenicity data

variability. Thus, in our opinion, it is in fact a determining

factor at the time of selecting the best model to be used later

(Table 3), besides it present a greater F of Fischer ðF ¼

50:16Þ and minor standard deviation of data ðS ¼ 1:30Þ

which confirms the former selection. Predicted, observed

and residual values for all compounds in training series

appear in Table 3. Fig. 1 of predicted values against the

observed ones mutagenicity can be seen immediately.

A cross-validation of leave-one-out type was done where

it was possible to confirm that model obtained using

standard dipole moments for the bond weightings had a

greater coefficient of correlation ðq2Þ and showed a minor

standard deviation ðScvÞ for this test.

Equation of the model obtained by this bond weight is as

follows:

ln TA100 ¼ 23:24 þ 0:72m1m1 2 0:11m1m3 þ 0:13m4

2 1:01 £ 1025m0m11 ð1Þ

In this equation, m1m1 is the square of the sum of dipole

moments in the molecule, the m4 is the four order spectral

moment, m1m3 and m0m11 is the multiplication of the

respective spectral moment in the molecule according to

selected case.

Predicted, observed and residual values for all compounds

in training set, using this model, appear in Table 3. The

interpretation of these models is given in a following

section. However, before making this interpretation, we

need to orthogonalize the molecular descriptors included in

the model obtained by Yourtee et al. (Eq. (2)) to eliminate

the intercorrelation existing among of them.

3.2. The orthogonalization of molecular descriptors

In order to avoid collinearity, Randić’s orthogonalization

procedure was carried out [21–24]. The main philosophy of

this approach is to avoid the exclusion of descriptors on the

basis of its collinearity with other variables previously

included in the model. It is known that the interrelatedness

among the different descriptors can result in highly unstable

regression coefficients, which makes impossible to know the

relative importance of an index and underestimates the

utility of the regression coefficients in a model.

The Randić method of orthogonalization has been

described in details in several publications [21–25]. Thus,

we will give a general overview here.

In this sense, in the model 3 we used Hv ¼ 1OðHvÞ as the

first orthogonal variable. Afterwards, the successive

residuals of the step-by-step regressions between each

variable selected in the model and the others in order of

statistical significance were calculated [26]. All these

residuals were used as the remnant orthogonal variables in

the model 3 [26]. In this analysis the least squares method

selected all orthogonal analogs of collinear variables. It

ensured us that, in spite of variables collinearity, each

variable carry an amount of information do not encoded in

the others [23,26,27].

3.3. Interpretation of QSPR models

As can be appreciated in Eq. (1), the variable m1m1

contributes to increase the property under study, indicating

that an increase in the total monomer polarity can induce an

increase in the mutagenic potential of this molecule. This

hypothesis is not in contradiction with the behavior of the

m1m3 variable, which negatively contributes to the muta-

genicity of this type of structure. In this case, the third

order spectral moment [29] negatively contributes too,

thus it is necessary carry out a group analysis to deter-

mine which sub-structures negatively contribute to this

property. In a previous study with these same monomers

Yourtee et al. [2] have tried to model the mutagenicity using

Table 2

Statistical parameters of the lineal regression models for mutagenicity obtained for the four kinds of descriptors

Weighting bonds Spectral moments N S R2 F p q2 Scv

Distance m2, m11, m1m11, m5 23 0.22 0.757 41.30 0.00 0.72 0.50

Dipole m1m1, m1m3, m4, m0m11 23 0.13 0.918 50.16 0.00 0.89 0.28

Molar refractivity m7, m13, m15, m1m13 23 0.26 0.490 36.58 0.00 0.40 0.68

Radius of Van Der Waals m0, m3, m2m11, m1m9 23 0.15 0.830 45.25 0.00 0.79 0.42
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quantum-mechanical descriptors. In this study, only 22

compounds were used for the training set, whereas the

whole set was of 23 compounds. An explanation for letting

aside this compound was not offered. In our model this

compound was not included leading to a correlation

coefficient of 0.9518. However, from a practical point of

view this decision is not quite good because the restricted

number of compounds considered. On the other hand, these

authors do not take into account the possible collinearity

between the variables. This fact can lead to mistaken

hypothesis as has been proved [26].

The equation that describe the mutagenicity of ‘dental’

Table 3

Predictions, residuals and names of the monomeric compounds in the training set

Name Observed ðln TA100Þ Predicted ðln TA100Þ Residual ðln TA100Þ

Urethane dimethacrylate 23.47 23.29 20.17

Glicidyl methacrylate 21.92 20.81 21.10

Bisphenol A dimethacrylate 24.51 24.54 0.03

Glicidyl acrylate 20.75 21.67 0.92

2-Chloro-3-dichloromethyl-4-hydroxyfur-2-enone 8.75 9.05 20.30

2-Chloro-3-dichloromethyl-4-methoxyfur-2-enone 8.65 6.84 1.80

2-Chloro-3-dibromomethyl-4-hydroxyfur-2-enone 8.61 8.74 20.13

2-Bromo-3-dibromomethyl-4-hydroxyfur-2-enone 7.97 8.56 20.59

2-Chloro-3-chloromethyl-4-hydroxyfur-2-enone 6.36 4.15 2.20

2-Bromo-3-bromomethyl-4-hydroxyfur-2-enone 6.04 3.82 2.21

2-Chloro-3-dibromomethylfur-2-enone 5.20 6.21 21.01

2,3-Dichloro-4-hydroxyfur-2-enone 4.09 3.58 0.50

2-Chloro-3-chloromethylfur-2-enone 1.59 1.91 20.32

2-Chloro-3-bromomethylfur-2-enone 1.37 1.74 20.37

2-Bromo-3-chloromethylfur-2-enone 1.37 1.77 20.40

2,3-Dichloro-4-methoxyfur-2-enone 0.99 4.41 23.42

2-Chloro-3-methyl-4-ethoxyfur-2-enone 0.74 0.79 20.05

2-Chloro-3-methyl-4-hydroxyfur-2-enone 0.41 20.25 0.66

2-Bromo-3-methyl-4-hydroxyfur-2-enone 0.41 20.39 0.80

2,3-Dichlorofur-2-enone 0.11 0.17 20.06

3-Chloro-4-ethoxyfur-2-enone 20.22 0.36 20.58

2-Chloro-4-hydroxyfur-2-enone 21.60 21.62 0.02

3-Methyl-4-hydroxyfur-2-enone 23.51 22.91 20.59

Graphic 1. The linear relation between observed and predicted mutagenicity in dental monomers for the Eq. (1).
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monomers according to Yourtee et al. for this family of

compounds is the following:

ln TA100 ¼ 21:98 þ 0:06Hv 2 4:91F2 2 24:39QR2

2 0:79QRþ ð2Þ

In this equation, Hv is the vibrational enthalpy, F2 is the

fractional partial positively charged surface area, QR2 is the

relative negative charge of the most negatively charged

atom and QRþ is the relative surface area of the most

positively charged atom.

In order to show the existing collinearity between

independent variables was carried out a correlation between

them. For F2 and QRþ was found R2 ¼ 0:5302; and for Hv

and QR2 was obtained R2 ¼ 0:3751 indicating collinearity

in some extent between these independent variables of the

model. It means that these variables contain information of

each other. The weightings of these variables in the model

was determined using the method of forward stepwise and

for the orthogonalization of them was used the method of

Randić as we already explain in the previous section.

After the orthogonalization of the variables of Eq. (1) is

obtained an ‘orthogonalized model’. Independent variables

of this model do not show statistical dependence between

them.

Orthogonalization of such variables leads to the Eq. (3):

ln TA100 ¼ 22:32 þ 3:22OHv þ 1:98OF2

2 0:67OQR2 2 0:49OQRþ ð3Þ

Differences in the sign of the coefficients can be appreciated

between both equations. This result leads us to think that a

chemical explanation for the contribution of these descrip-

tors is not realiable if a process of orthogonalization is not

carried out.

To complete our mutagenicity study of this set of

monomers is absolutely necessary to know which are the

possible contributions of some chemical groups that form

part of the training set under study.

3.4. Study of group’s contribution to mutagenic property

The study of group contribution to mutagenic property is

very important, because it is a guide for the development

and synthesis of new molecules with low mutagenic

potenciality. The compound 3 of the training set, Bisphenol

A dimethacrylate, was taken as base structure for calculat-

ing the contributions of groups, so that it shows the most

lower mutagenic character of selected data. As can be seen

in Table 4 the contributions to mutagenic power of different

groups in two zones of the former mentioned compound are

shown.

Some comments about the contribution to the mutageni-

city of each group according to our model must be pointed

out. Contribution of chloride in position I (8.27) is greater

than bromide (8.14) due to the higher electronegativity of

the former leading to a higher dipolar moment in this part of

the molecule giving a higher mutagenicity as was explained

above. Something similar occurs with the substituted methyl

groups, which are mono, di and trichlorides respect to the

bromides. Inside this set the property increases too in the

order CX3 . CHX2 . CH2X for both halides. This obser-

vation was already reported [2]. The same trend was

observed for the position II but the values are lesser that in

position I except for the tri-halides. By other hand only the

groups that contribute to decrease the mutagenicity are

CHBrCH3 and CHClCH3 even in comparison with the ethyl

group. It seems to indicate that the lesser polarization of

the electronic cloud leads to a lesser mutagenicity because

inductive effects of halide and methyl groups are

counterbalanced.

It is to be noted that all monomers substituted in position

I ðR1Þ; can be in principle homopolymerized by radical

initiators when R2 ¼ H: These monomers are 1,1 disub-

stituted olefins. It could be consider some transference or

decrease in molecular weight can occur but not interfering

Table 4

Contributions to mutagenic power of different groups in the two zones

under study

Group Contribution in position

R1 R2

–Acetate 6.40 6.42

–Benzene 8.40 8.60

–Br 8.14 8.06

–CBr3 11.54 11.68

–CCl3 11.76 11.93

–CH2Br 4.20 4.15

–CH2Cl 4.23 4.17

–CHBr2 6.96 6.87

–CHBrCH3 20.35 20.45

–CHCl2 7.10 7.02

–CHClCH3 20.45 20.56

–Cl 8.27 8.18

–COOH 12.87 12.77

–CH2CH3 2.59 2.86

–OH 6.37 6.33
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polymerization. There is an exception when the molecule

holds the OH group because is known that vinyl alcohols are

unstable. For the methacrylates set substituted in position II

the homopolymerization is not possible because are 1,2

disubstituted olefins that are prone to polymerization. For

this set the only way of reaction is the copolymerization

with other biocompatible polymers.

4. Concluding remarks

We have shown that TOPS-MODE approach is able to

describe mutagenicity of dental monomers with an appro-

priate degree and robustness. In fact we have developed a

model for predicting mutagenicity of a data set of 23 dental

monomers. This model explains more than 91% of the

variance in the experimental mutagenicities with appro-

priated predictive power.

On the other hand, the main advantage of using TOPS-

MODE approach in QSAR has been confirmed again in this

work. This approach is able to derive group contributions

and gives simultaneously a valuable capability of interpret-

ation contributing to drug discovery [30].
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González. On the other hand, the authors would like to

express they more sincerely gratitude to unknown referees

and the editor Professor J.E. Mark by useful comments and

kind attention.

References

[1] Chan D, Titus H, Chung K, Dixon H, Wellinghoff S, Rawls H. Dent

Mater 1999;3:219–22.

[2] Yourtee D, Holder A, Smith R, Morrill J, Kostoryz E, Brockmann W,

Glaros A, Chappelow C, Eick D. J Biomater Sci Polym Edn 2001;1:

89–105.

[3] Atkinson A, Roy D. Biochem Biophys Res Commun 1995;210:

424–8.

[4] Estrada E, Gutiérrez Y. J Chromatogr A 1999;858:187–99.

[5] Estrada E, Peña A. Bioorg Med Chem 2000;8:2755–70.

[6] Estrada E, Uriarte E. SAR QSAR Environ Res 2001;12:309–24.

[7] Estrada E. J Chem Soc Faraday Trans 1998;94:1407–11.
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